Detector Strategy

Axel Drees, Stony Brook University NSAC subcommittee meeting, Bethesda, April 4, 2005

What I will talk about:

- The Goals of Upgrades: Provide key information not accessible with current RHIC facility and its detectors
- Challenges: Require enhanced detector capabilities and accelerator performance
- Detector upgrades: Cost effective upgrades of PHENIX, STAR to meet challenges
 Exploit the strengths of existing detector systems
 Developed over past 5 year, 57 institutions involved world wide
 Designed to address broad range of questions in spin and HI physics
- Focus on near term upgrades

RHIC: A Unique QCD Laboratory

RHIC Physics Beyond the Reach of Current Facility

Provide key measurements so far inaccessible at RHIC in three broad areas:

- High T QCD (AA, pA, and pp):
 - Electro magnetic radiation (e⁺e⁻ pair continuum)
 - Heavy flavor (c- and b-production)
 - Jet tomography (jet-jet and γ-jet)
 - Quarkonium $(J/\psi, \psi', \chi_c \text{ and } \Upsilon(1s), \Upsilon(2s), \Upsilon(3s))$

- requires highest
- **AA luminosity**

- Spin structure of the nucleon:
 - Quark spin structure $\Delta q/q$ (W-production)
 - Gluon spin structure $\Delta G/G$ (heavy flavor and γ -jet correlations)
- Low x phenomena
 - gluon saturation in nuclei (particle production at forward rapidity)

All measurements require upgrades of detectors and/or RHIC luminosity

High T QCD: Low-Mass e^+e^- Pairs at RHIC

R. Rapp nucl-th/0204003

Goal:

use sensitivity of e+e- production to
 Thermal radiation
 Chiral transition (creation of mass)
 Quasi particles in sQGP

Challenges:

- Large charm contribution
- Huge combinatorial background

$$\begin{array}{cccc}
\gamma \to e^+ e^- \\
\pi^0 \to \gamma e^+ e^-
\end{array}$$

Detector upgrades:

HBD for PHENIX

A Hadron Blind Detector (HBD) for PHENIX

Full scale prototype under construction

 Weizmann Inst., Stony Brook Univ., BNL, Columbia Univ., Florida Inst. Tech., CNS-Tokyo, Univ. Mass, RIKEN BNL Res. Center (RBRC)

High T QCD: Heavy Flavor Production

Inclusive electrons: D,B \rightarrow e + X

Goal:

Test of hydrodynamic properties of sQGP

Charm is heavy and is produced by hard scattering early in collision

First indications that charm interacts

Challenges:

Directly observe charm & beauty

strongly with medium

Low rate for beauty and high p_T charm

Upgrades:

- Silicon vertex trackers (σ < 100 μ m)
- Luminosity upgrade of RHIC

Silicon Vertex Tracker

- PHENIX: VTX collaboration
 - 72 collaborators from 14 institutions
 - BNL, Florida State Univ., Iowa State Univ., KEK, Kyoto Univ., LANL, Niigata Univ., ORNL, RIKEN, RIKEN BNL Reas. Center, Stony Brook Univ., Univ. New Mexico, Ecole Poly Tech, Saclay
- Proposal submitted to DOE
- Potential funding FY07/FY08

STAR: HFT collaboration

- BNL, UC Irvine, UCLA, Nuclear Physics Inst. Prague, Inst. Recheres Subatomique Strasbourg, MIT, LBL, Ohio State Univ
- Proposal in preparation

High T QCD: Jet tomography of QGP

Au-Au jet correlations

BR���K

Goal:

- determine plasma properties speed of sound, opacity, viscosity, equation of state, ...
- Tools: collective behavior, transmission of hard probes, modification of jet fragmentation

Challenges:

- Obtain detailed angular correlations
 Over Large acceptance in y and p_T
 With particle identification to ≥ 4 GeV/c
- Low rate for γ-jet

Upgrades:

• STAR: PID up to 4 GeV (TOF)

increased rate capability

PHENIX: PID up to 10 GeV

increased tracking and calorimeter

acceptance

• RHIC: luminosity upgrade

STAR: Time of Flight Upgrade

STAR: TOF collaboration

- 69 collaborators from 16 institutions
- BNL, Inst. High Energy Physics Beijing, Inst. Modern Physics LanZhou, LBL,
 Moscow Engineering Physics Inst., NASA, UNAM & CINVESTA Mexico, Rice Univ.,
 Shanghai Inst. Nuclear Research, Tsinghua Univ., Inst. Technology of China, Univ.
 Texas, UCLA, Univ. Washington, Yale Univ.

Construction FY06/FY07

MRPC design

High T QCD: Quarkonium Spectroscopy

Goal:

• Address (de)confinement: J/ψ , ψ , χ_c and $(\Upsilon(1s),\Upsilon(2s),\Upsilon(3s))$

Challenges:

Low rates require highest possible luminosity

Example of expected quarkonium statistics from future Au-Au runs (PHENIX)

J/ψ (ψ')
$$\rightarrow$$
 μμ 38,000 (1400)
Υ \rightarrow μμ 35

- Open charm reference
- Measure gamma in coincidence

Upgrades:

- RHIC luminosity upgrade (electron cooling)
- PHENIX: forward calorimeter for $\chi_c \rightarrow \gamma J/\psi$
- STAR: rate capability (DAQ)
 - + additional electron identification (TOF)

RHIC upgrade (30 nb⁻¹) 760,000 (28,000) 700

Central 0-10% Au-Au m_{γμμ}-m_{μμ}

Spin Structure of the Proton: W physics

Goal:

- q and q spin structure of the nucleon
- Use $p \uparrow p \rightarrow W + X$

Challenges:

- nb cross section requires running p↑p at 500 GeV with high luminosity and polarization
- Reduce MHz event rate to few kHz to tape
- Unambiguous identification of W⁺ and W⁻

Detector upgrades:

- PHENIX: high p_T single muon trigger
- STAR: tracking upgrade

W-Physics upgrades

STAR: Tracking Upgrade

R&D ongoing

BR

 ANL, BNL, Indiana Univ., LBL, MIT, Yale Univ., Zagreb Univ.

PHENIX: muon trigger

- Proposed to NSF
- Univ. Illinois-UC, UC-Riverside, Iowa State Univ., Abilene Christian Univ., Univ. Colorado, Peking Univ., Columbia Univ., Kyoto Univ, RBRC, Georgia State Univ.

Spin structure of the Proton: Gluon Polarization

Goal:

- Extend kinematic region
- Provide new channels for measurement
 Heavy flavor (c,b) production
 Exclusive measurements of γ-jet

Challenges:

- Measure new channels: open charm, beauty and γ -jet
- Same channels serve as penetrating probes to study sQGP

Detector upgrades:

Utilize full suite of PHENIX/STAR upgrades

PHENIX: silicon tracker, forward calorimeter

STAR: tracking upgrade, forward meson spectrometer

Low x Physics: Forward Upgrades

Goal:

• Verify/falsify color glass hypothesis; gluon density xg(x) in Au 0.001<x<0.1

Challenge:

Hadron detection at forward rapidity, ie low x

Detector upgrades:

- STAR: forward meson calorimeter
- PHENIX: forward EM calorimeter and silicon tracker

Forward Physics Upgrades: 1<η<3

- PHENIX: forward calorimeter
 - R&D ongoing
 - BNL, UC-Riverside, JINR-Dubna, Moscow State U, Charles Univ., Czech Tech Univ., Czech Inst of Physics

• STAR: forward meson calorimeter

- Proposal submitted to NSF
- Penn State Univ., BNL, UC Berkley, IHEP Protvino, Texas A&M Univ.

FMS Configuration

RHIC Upgrades Overview

Upgrades	High T QCD				Spin		Low X
	e+e-	heavy	jet	quarkonia	W	∆G/G	
		flavor	tomography				
PHENIX							
hadron blind detector (HBD)	X						
Vertex tracker (VTX and FVTX)	X	X	0	0		X	0
μ trigger				0	X		
forward calorimeter (NCC)			0	0	0		X
STAR							
time of flight (TOF)		0	X	0			
Heavy flavor tracker (HFT)		X		X			
tracking upgrade		0			X	0	
Forward calorimeter (FMS)						0	X
DAQ		0	X	X	0	0	0
RHIC luminosity	0	0	X	X	0	0	0

X upgrade critical for success

upgrade significantly enhancements program

Which measurements are unique at RHIC?

- RHIC spin physics and eRHIC measurements are unique.
- High T QCD: General comparison to LHC
 - LHC and RHIC (and GSI) are complementary
 - They address different regimes (CGC vs sQGP vs hadronic matter)
 - Experimental issues: "Signals" at RHIC overwhelmed by "backgrounds" at LHC
- High T QCD: Measurement specific (compared to LHC)
 - Charm measurements: favorable at RHIC

Charm is a "light quark" at LHC, no longer a penetrating probe

Abundant thermal production of charm

Large contribution from jet fragmentation and bottom decay

Bottom may assume role of charm at LHC

• Quarkonium spectroscopy: J/ψ , ψ , χ_c easier to interpreter at RHIC

Large background from bottom decays and thermal production at LHC

Upsilon spectroscopy can only be done at LHC

• Low mass dileptons: challenging at LHC

Huge irreducible background from charm production at LHC

Jet tomography: measurements and capabilities complementary

RHIC: large calorimeter and tracking coverage with PID in few GeV range

Extended p_T range at LHC

Summary

- Goals of RHIC Detector upgrades program:
 - Key measurements beyond scope of RHIC and its detectors
 - In three areas: high T QCD, proton spin structure, low x phenomena
 - Evolution of the RHIC program: discovery \rightarrow exploration \rightarrow precision
- Challenges for key measurements
 - Detector upgrades and luminosity upgrade requirements for specific measurements
- Upgrades program of PHENIX and STAR
 - Ongoing effort carried by 57 institutions
 - 30 new groups joined PHENIX/STAR over past 4 years, 11 from Europe, many involved with upgrades
 - Staged implementation of upgrades over several years

